Homogentisate 1-2-Dioxygenase Downregulation in the Chronic Persistence of Pseudomonas aeruginosa Australian Epidemic Strain-1 in the CF Lung
نویسندگان
چکیده
Some Pseudomonas aeruginosa strains including Australian Epidemic Strain-1 (AES-1 or AUS-01) cause persistent chronic infection in cystic fibrosis (CF) patients, with greater morbidity and mortality. Factors conferring persistence are largely unknown. Previously we analysed the transcriptomes of AES-1 grown in Luria broth, nematode growth medium for Caenorhabditis elegans assay (both aerobic) and artificial sputum medium (mainly hypoxic). Transcriptional comparisons included chronic AES-1 strains against PAO1 and acute AES-1 (AES-1R) against its chronic isogen (AES-1M), isolated 10.5 years apart from a CF patient and not eradicated in the meantime. Prominent amongst genes downregulated in AES-1M in all comparisons was homogentisate-1-2-dioxygenase (hmgA); an oxygen-dependent gene known to be mutationally deactivated in many chronic infection strains of P. aeruginosa. To investigate if hmgA downregulation and deactivation gave similar virulence persistence profiles, a hmgA mutant made in UCBPP-PA14 utilising RedS-recombinase and AES-1M were assessed in the C. elegans virulence assay, and the C57BL/6 mouse for pulmonary colonisation and TNF-α response. In C. elegans, hmgA deactivation resulted in significantly increased PA14 virulence while hmgA downregulation reduced AES-1M virulence. AES-1M was significantly more persistent in mouse lung and showed a significant increase in TNF-α (p<0.0001), sustained even with no detectable bacteria. PA14ΔhmgA did not show increased TNF-α. This study suggests that hmgA may have a role in P. aeruginosa persistence in chronic infection and the results provide a starting point for clarifying the role of hmgA in chronic AES-1.
منابع مشابه
Correction: Homogentisate 1-2-Dioxygenase Downregulation in the Chronic Persistence of Pseudomonas aeruginosa Australian Epidemic Strain-1 in the CF Lung
open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
متن کاملPseudomonas aeruginosa AES-1 Exhibits Increased Virulence Gene Expression during Chronic Infection of Cystic Fibrosis Lung
Pseudomonas aeruginosa, the leading cause of morbidity and mortality in people with cystic fibrosis (CF), adapts for survival in the CF lung through both mutation and gene expression changes. Frequent clonal strains such as the Australian Epidemic Strain-1 (AES-1), have increased ability to establish infection in the CF lung and to superimpose and replace infrequent clonal strains. Little is kn...
متن کاملInactivation of the hmgA gene of Pseudomonas aeruginosa leads to pyomelanin hyperproduction, stress resistance and increased persistence in chronic lung infection.
Clinical isolates of Pseudomonas aeruginosa that hyperproduce a dark-brown pigment are quite often found in the lungs of chronically infected patients, suggesting that they may have an adaptive advantage in chronic infections. We have screened a library of random transposon insertions in P. aeruginosa. Transposon insertions resulting in the hyperproduction of a dark-brown pigment were found to ...
متن کاملComplete Genome Sequence of Persistent Cystic Fibrosis Isolate Pseudomonas aeruginosa Strain RP73
Pseudomonas aeruginosa can establish lifelong chronic airway infections in cystic fibrosis (CF) patients. However, the genetic features associated with long-term persistence in the lung are not understood. We sequenced the genome of P. aeruginosa strain RP73, which was isolated after 16.9 years of chronic lung infection in a CF patient.
متن کاملA putative ABC transporter, hatABCDE, is among molecular determinants of pyomelanin production in Pseudomonas aeruginosa.
Pyomelanin overproduction is a common phenotype among Pseudomonas aeruginosa isolates recovered from cystic fibrosis and urinary tract infections. Its prevalence suggests that it contributes to the persistence of the producing microbial community, yet little is known about the mechanisms of its production. Using transposon mutagenesis, we identified factors that contribute to melanogenesis in a...
متن کامل